

TransLEDTM

ДОРОЖНЫЙ ЗНАК ПЕРЕМЕННОЙ ИНФОРМАЦИИ

ПОЛНОМАТРИЧНЫЙ СВЕТОДИОДНЫЙ МОДУЛЬНЫЙ

SMP 20C-128160.

Руководство по эксплуатации

03754165.467845.007P3

E-mail: office@profingenerstroy.ru

СОДЕРЖАНИЕ

1.	ОПИСАНИЕ И РАБОТА	4
	1.1. Назначение	4
	1.2. Технические характеристики	5
	1.3. Состав изделия	
	1.4. Устройство и работа	8
	1.5. Маркировка	10
	1.6. Упаковка	
2.	ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	12
3.	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	13
4.	ТЕКУЩИЙ РЕМОНТ	14
5.	ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	15

1. Настоящее руководство по эксплуатации 03754165.467845.007РЭ (далее – руководство по эксплуатации или РЭ) предназначено для описания дорожных знаков переменной информации на светодиодах SMP 20C-128160 и правил его эксплуатации.

К работе с изделием в системе управления дорожным движением допускаются специалисты, прошедшие обучение на знание настоящего РЭ, а также имеющие опыт работы с аналогичным оборудованием.

При изучении изделия необходимо дополнительно руководствоваться комплектом паспортов его составных частей и инструкцией по монтажу, пуску, регулированию изделия.

- 2. В настоящем РЭ приняты следующие термины и определения:
 - поверхность визуализации плоскость излучения дорожного знака или табло переменной информации на светодиодах, образуемая совокупностью элементов отображения;
 - элемент отображения (пиксел) основной излучающий объект (светодиод) или набор таких объектов (светодиодов) на поверхности визуализации знака, активация которого вместе с другими элементами отображения приводит к выводу требуемой информации;
 - матрица конструктивная сетка, в узлах которой располагаются элементы отображения;
- 3. Структура обозначения.

Пример: знак SMP 20C-128160, где:

- SMP дорожный знак переменной информации на светодиодах;
- 20 шаг элемента отображения (шаг пикселя);
- С обозначение цветов светодиодов в элементе отображения три светодиода красный + зелёный + синий:
- 128160 условное обозначение геометрических размеров табло, где: 128 ширина (см); 160 высота (см).

Бюро Интеллектуальных Систем

03754165.467845.007P3

1. ОПИСАНИЕ И РАБОТА

1.1. Назначение

1.1.1. Дорожный знак переменной информации SMP 20C-128160 на светодиодах (далее – Д3ПИ или

изделие) предназначен для использования в составе систем управления дорожным движением в качестве

оконечного устройства отображения информации.

Вид отображаемой информации:

- статические изображения дорожных знаков в соответствии с ГОСТ Р 52289-2004 и ГОСТ Р 52290-

2004.

1.1.2. ДЗПИ рассчитан на работу от промышленной сети переменного тока частотой от 49 до 51 Гц в

диапазоне питающих напряжений от 191 В до 253 В.

1.1.3. ДЗПИ предназначен для эксплуатации на открытом воздухе с установленными значениями

температуры окружающего воздуха от минус 40°C до плюс 60°C (класс T1+T3 по ГОСТ 32865-2014) и

относительной влажности 95% в условиях атмосферного давления от 84 до 106,7 кПа (от 630 до 800

мм.рт.ст.).

Конструкция изделия обеспечивает стойкость к воздействию соляного тумана в соответствии с

требованиями ГОСТ 32865-2014.

1.1.4. Устойчивость изделия к загрязнению соответствует степени стойкости D3 по

ΓOCT 32865-2014.

1.1.5. Класс защиты от поражения электрическим током - I по ГОСТ 12.2.007.0.

1.1.6. Степень защиты изделия, обеспечиваемая оболочками:

изделия в целом: IP56 по ГОСТ 14254,

фронтальная поверхность – IP66 по ГОСТ 14254 (класс РЗ по ГОСТ 32865-2014);

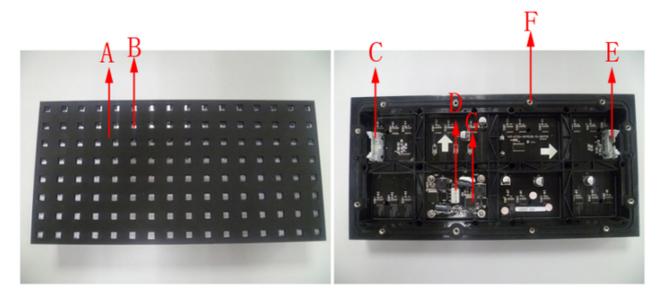
1.2. Технические характеристики

1.2.1. Технические данные и основные параметры приведены в таблице 1.

Таблица 1.

Nº	Наименование параметра	Значение параметра	
1	Площадь поверхности визуализации, м²	2.048	
!		2.040	
2a	Размеры поверхности визуализации (ширина х высота), м	1.28 x 1.6	
26	Размеры корпуса ЗПИ (ширина х высота х глбина), м	1.4 x 1.7 x 0,197	
3	Шаг элемента отображения (шаг пикселя), мм	20	
4	Тип элементов отображения	Светодиоды «Nichia» NSSM227A	
5	Формат изображения и количество элементов отображения (пикселей) в матрице	64 х 80, 5120 пикселов	
6	Светотехнические характеристики знака по ГОСТ 32865-2014:		
6a	Цвет, класс : красный	C2	
	зеленый	C2	
	СИНИЙ	C2	
	белый	C2	
	желтый	C2	
6б	Яркость, кд/м², не менее / класс: красный	3100 / L3	
	зеленый	3720 / L3	
	СИНИЙ	1240 / L3	
	белый	12400 / L3	
	желтый	7440 / L3	
6в	Коэффициент яркости	R2	
6г	Угол излучения	B5 (0±15 по горизонтали., 05 по вертикали.)	
7	Степень защиты	Фронтальная поверхность – IP66	
8	Интерфейсы управления	RS-485 и Ethernet 10 TX	
9	Потребляемая мощность от сети 220+33/-29 В, частотой (50±1) Гц, кВт, на максимальной яркости, не более	0.5	
10	Масса, кг, не более	110	

1.2.2. Режимы работы и функциональные возможности


- 1.2.2.1. В соответствии с установочно-монтажными условиями ДЗПИ предназначен для размещения на П-образной или Г-образной строительной несущей конструкции, устанавливаемой над проезжей частью автомобильной дороги или на обочине.
- 1.2.2.2. Изделие обеспечивает загрузку и сохранение в энергонезависимой памяти предварительно подготовленных изображений дорожных знаков в соответствии с ГОСТ Р 52289-2004 и ГОСТ Р 52290-2004 для последующего отображения в масштабе 1:1.
- 1.2.2.3. Изделие обеспечивает прием от контроллера обслуживаемого объекта (дорожного контроллера) команд на смену изображения дорожных знаков или текстовой информации.
- 1.2.2.4. Изделие обеспечивает передачу в дорожный контроллер и (или) в центр управления дорожным движением информации о выполнении ранее переданных команд.

1.2.2.5. Изделие обеспечивает управление яркостью элементов отображения автоматически (при изменении внешней освещенности табло) по сигналам от датчиков освещенности и (или) по команде от дорожного контроллера.

1.3. Состав изделия

- 1.3.1. ДЗПИ представляет собой моноблочную конструкцию, состоящую из следующих основных конструктивных элементов:
 - поверхности визуализации;
 - несущего корпуса;
 - задних дверей;
 - датчиков освещенности.
- 1.3.2. Поверхность визуализации знака представляет собой наборное поле, состоящее из однотипных светотехнических модулей полноцветных светодиодных кластеров YHT-FVMS-OT20-1R1G1B-1S размерами 320 x 160 мм.

Puc.1 Кластер YHT-FVMS-OT20-1R1G1B-1S. Лицевая поверхность и тыльная сторона.

А – Матовая алюминиевая поверхность; В – Оптическая линза (призма); С – Входной информационный разъём; D – Разъём питания; Е – Выходной информационный разъём; F – Крепёжные отверстия с резьбой; G – Преобразователь питания 12В→(2.8В+3.8)

Лицевая поверхность кластеров (см. Рис.1) закрыта защитной алюминиевой решеткой с отверстиями под линзы. Решетка имеет специальное матовое покрытие, обеспечивающее требуемое значение контраста (коэффициента яркости – согласно ГОСТ 32865-2014).

Степень защиты фронтальной поверхности кластеров - IP66.

- 1.3.5. Внешний вид и основные размеры ДЗПИ показаны на рис. 2. Изделие представляет собой металлическую конструкцию прямоугольной формы (корпус). Внутри корпуса установлены кластеры, блок питания и узлы управления:
- контроллер YHT-SYS-STM32-05;
- плата развертки YHT-SYS-FS-41;
- плата анализа состояния светодиодов YHT-HUBTEST-07;
- плата телеметрии YHT-SYS-DETECT-01.

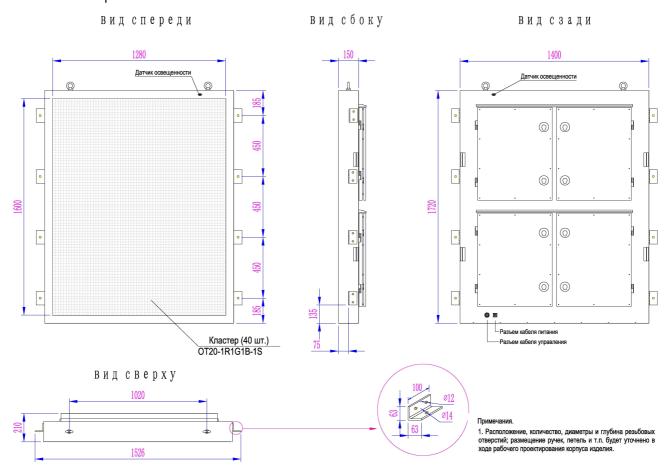


Рис. 2. Внешний вид и основные размеры ДЗПИ.

1.3.6. Датчики освещенности, имеющиеся в составе изделия, предназначены для автоматического регулирования яркости элементов отображения. Они размещаются в корпусе на передней и задней поверхностях.

- 1.3.7. ДЗПИ оснащён оборудованием поддержания внутреннего микроклимата: нагревателем с встроенным вентилятором, фильтрующим вентилятором охлаждения, выпускной решёткой для выхода горячего воздуха и термостатами.
- 1.3.8. Все детали и сборочные единицы изделия имеют защитные лакокрасочные и гальванические покрытия, обеспечивающие надежную работу изделия во всех регламентируемых условиях эксплуатации.

1.4. Устройство и работа

1.4.1. Контроллер ДЗПИ - YHT-SYS-STM32-05 — устройство, изготовленное на базе микроконтроллера STM32F103ZE, содержащее в своем составе оперативную память (512КБ), энергонезависимую память для хранения библиотеки изображений дорожных знаков (NAND Flash 64МБ), узел интерфейса Ethernet 10Base - T, два узла интерфейса RS-485, четыре узла интерфейса RS-232, узел часов реального времени (DS3231SN),

Контроллер YHT-SYS-STM32-05 обеспечивает управление работой ДЗПИ в целом и обмен информацией между данным ДЗПИ и дорожным контроллером.

Интерфейс Ethernet 10Base - контроллера YHT-SYS-STM32-05 используется для обмена информацией с дорожным контроллером.

Второй узел интерфейса RS-485 используется как внутренний (в пределах табло/знака) — для загрузки отображаемых ДЗПИ данных на несколько плат развертки YHT-SYS-FS-41, каждая из которых также имеет узел интерфейса . RS-485 и свой уникальный адрес. К платам развертки в свою очередь подключены цепочки кластеров — до 8 цепочек к каждой плате развертки. Для межкластерного соединения используется плоский 10-жильный кабель. Назначение выводов в разъемах такого кабеля приведено в таблице 2.

Таблица 2

	Номер вывода	Назначение вывода
(n) (9)	1	CK (Clock)
W 3	2	GND (Ground)
	3	LT (Latch)
8 7	4	GND (Ground)
	5	DR (Data Red)
6 5	6	DB (Data Blue)
	7	DG (Data Green)
4 3	8	NG (Reserv)
	9	OE (Output Enable)
(2) (1)	10	GND (Ground)

Выход последнего в цепочке кластера подключен ко входу платы анализа состояния светодиодов YHT-HUBTEST-07. Платы анализа состояния имеют по 4 входа для подключения выходных кабелей цепочек кластеров. В свою очередь платы анализа состояния светодиодов подключаются друг к другу в цепочку (2 платы) и к входному 14-контактному разъёму на плате развёртки YHT-SYS-FS-41.

Плата развертки YHT-SYS-FS-41 — устройство, изготовленное на базе микрокон-троллера STM32F103ZE, содержащее в своем составе узел интерфейса RS-485 с возможностью транзитного подключения (входной и выходной разъёмы), оперативную память (512КБ) и ПЛИС (программируемая логическая интегральная схема). Приём данных для отображения на кластерах происходит посредством интерфейса RS-485. ПЛИС служит для формирования последовательностей сигналов по линиям, приведённым в таблице 2, для заполнения информацией цепочек кластеров, а также для приёма данных о состоянии светодиодов с выходов цепочек кластеров. Частота регенерации (полного обновления информации в цепочках кластеров) — 90 герц.

1.4.2. Поверхность визуализации знака - полная светодиодная матрица. Она набрана из полноцветных светодиодных кластеров YHT-FVMS-OT20-1R1G1B-1S размером 16х8 пикселов каждый, соединенных последовательно при помощи информационных межкластерных кабелей.

Каждый кластер представляет собой цепочку микросхем, образующих многоразрядный сдвиговый регистр с последовательным входом и параллельным выходом. К выводам параллельного выхода регистра подключаются светодиоды, обеспечивающие требуемые светотехнические характеристики знака (цвет, яркость, отношение яркостей и угол излучения). Каждый пиксел (элемент отображения) кластера содержит три светодиода в одном корпусе – красный, зелёный и синий.

Кластер содержит преобразователи напряжения $12B \rightarrow (2.8B+3.8)$

- 1.4.3. Для регулирования яркости свечения элементов отображения изделия (в зависимости от времени суток, положения солнца, погодных условий и расположения (ориентации) ДЗПИ на местности) к знаку подключаются два датчика освещенности, ориентированных вдоль нормали к поверхности визуализации, но в противоположных направлениях относительно друг друга.
- 1.4.4. Питание каждой секции ДЗПИ осуществляется от источников питания с напряжениеми 12В для питания кластеров и 5В для питания узлов управления. Источники питания содержат встроенные вентиляторы, включающиеся автоматически при превышении температуры источника свыше 50°С либо при нагрузке более 35% максимальной.

1.4.5. Управление работой изделия осуществляется от дорожного контроллера посредством интерфейса Ethernet 10Base-T в соответствии с протоколом «Дорожные знаки и табло переменной информации.

Протокол управления и обмена данными. Описание».

1.5. Маркировка

1.5.1. Маркировка изделия выполнена в соответствии с требованиями действующей технической

документации.

1.5.2. Потребительская маркировка ДЗПИ выполнена на паспортной табличке, устанавливаемой на

клеевую основу. Паспортная табличка размещается на корпусе ДЗПИ в зоне подключения кабелей

управления и содержит:

- товарный знак предприятия-изготовителя;

- наименование и юридический адрес предприятия-изготовителя;

- наименование и условное обозначение изделия;

- наименования стандарта, в соответствии с которым изготовлено изделие - ГОСТ 32865-2014;

- классификационные характеристики по ГОСТ 32865-2014;

- номинальные значения напряжения сетевого питания и частоты;

- потребляемая мощность;

- номер изделия;

- дату изготовления.

- единый знак обращения продукции на рынке государств-членов Таможенного союза.

1.5.3. Функциональная маркировка составных частей изделия соответствует конструкторской

документации.

1.5.4. Маркировка транспортной тары соответствует требованиям ГОСТ 14192, конструкторской

документации и договора на изготовление и поставку оборудования. Транспортная маркировка выполнена

на этикетках и содержит:

- манипуляционные знаки по ГОСТ 14192;

товарный знак предприятия-изготовителя;

- наименование и условное обозначение изделия;

- дату упаковки;

- клеймо ОТК.

1.5.5. Отгрузочные реквизиты (номер договора, адрес и наименование грузополучателя, номер отгрузочного места) выполнены по ГОСТ 14192 несмываемой краской по трафарету.

1.6. Упаковка

- 1.6.1. Упаковка изделия выполнена в соответствии с действующей технической документацией.
- 1.6.2. Внутренняя упаковка и транспортная тара обеспечивают сохранность изделия, эксплуатационной и товаросопроводительной документации в условиях транспортирования и хранения, указанных в разделе 5 настоящего РЭ.
- 1.6.3. Эксплуатационная и товаросопроводительная документация в индивидуальных пакетах, выполненных из полиэтиленовой пленки толщиной не менее 0,1 мм, помещается непосредственно в тару.

2. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1. Эксплуатационные ограничения и подготовка к использованию

Подготовку к использованию и монтаж изделия необходимо производить в соответствии с требованиями инструкции по монтажу.

К работе с изделием допускаются специалисты, требования к которым указаны в разделе «Введение» настоящего РЭ.

2.2. Включение изделия в работу

После выполнения работ согласно инструкции по монтажу изделие готово к эксплуатации.

3. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 3.1. Техническое обслуживание изделия должно осуществляться представителями эксплуатационной организации Заказчика, прошедшими специальное обучение и допущенными к работе с табло в установленном порядке.
- 3.2. Техническое обслуживание изделия по периодичности проведения подразделяется на ежемесячное, ежеквартальное, полугодовое и годовое и должно осуществляться в соответствии с заранее утвержденным графиком. Перечень проводимых работ указан в таблице 3.

Таблица 3

Nº	Вид технического обслуживания	Наименование работ	Содержание проводимых работ
1	Ежемесячное	Внешний осмотр (проводится с земли без отключения изделия)	Проверка целостности защитного заземления, корпуса изделия и поверхности визуализации
2	Ежеквартальное	Детальный внешний осмотр (проводится из монтажной люльки)	Проверка по п.1 настоящей таблицы. Проверка целостности кабелей внешних подключений
3	Полугодовое	Ежеквартальные работы	См. п.2 настоящей таблицы
		Очистка поверхности визуализации (проводится при отключенном сетевом питании)	Очистка проводится методом промывки струей воды из брандспойта. Выходной диаметр брандспойта – 6 мм, расход воды – не более 10 л/мин. ВНИМАНИЕ! Запрещается прика- саться руками, инструментом и каким-либо чистящим материалом к светодиодам.
		Очистка наружных поверхностей корпуса (проводится из монтажной люльки)	Очистка проводится мягкой щеткой с длиной ворса не менее 50 мм

E-mail: office@profingenerstroy.ru Internet: http://www.profingenerstroy.ru

4. ТЕКУЩИЙ РЕМОНТ

- 4.1. Ремонт изделия и его составных частей, за исключением устранения неисправностей, указанных в
- п. 4.2, осуществляется предприятием-изготовителем. Допускается замена отдельных неисправных составных частей на исправные из состава группового комплекта ЗИП с санкции предприятия-изготовителя.
- 4.2. Перечень возможных неисправностей и методы их устранения персоналом эксплуатирующей организации приведен в таблице 4.

Таблица 4

Nº	Внешнее проявление отказа или повреждения	Возможные причины проявления	Методы устранения
1	Отсутствует изображение на всей поверхности визуализации	Отсутствует сетевое питание знака или нарушена связь с системой управления дорожным движением	Проверить и, при необходимости, восстановить надежность подключения кабелей внешних подключений. Проверить наличие сетевого питания. Проверить прохождение сигналов управления и передачи данных
		Вышел из строя контроллер YHT-SYS- STM32-05 или блок питания знака/секции	Заменить неисправные блоки на исправные из состава группового комплекта ЗИП
		Вышла из строя плата развертки YHT- SYS-FS-41 или блок питания данной секции	Заменить неисправные блоки на исправные из состава группового комплекта ЗИП
2	Отсутствует изображение на одном из кластеров	Отказ данного кластера	Заменить неисправный кластер на исправный из состава группового комплекта ЗИП
3	Отсутствует изображение на части кластеров конкретного знака	Нарушена надежность подключения межкластерного информационного кабеля от последнего кластера, находящегося в рабочем состоянии, к соседнему с ним, находящемуся в нерабочем состоянии	Восстановить рабочее состояние частей соединителей кабеля методом переподключения
		Отказ межкластерного информа- ционного кабеля	Заменить неисправный кабель на исправный из состава группового комплекта ЗИП
4	Отсутствует автоматическое регулирование яркости элементов отображения	Отказ датчика освещенности	Заменить неисправный датчик на исправный из состава группового комплекта ЗИП
5	Искажение изображения или ослабление яркости свечения элементов отображения на одном или нескольких кластерах	Повреждение или локальное загрязнение решетки на кластере	При необходимости заменить неисправный кластер на исправный из состава группового комплекта ЗИП Провести внеплановое ТО по п. 3 таблицы 3 настоящего РЭ

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1. Транспортирование и хранение должно производиться в соответствии с требованиями ГОСТ 15150 и настоящего РЭ.
- 5.2. Условия транспортирования должны соответствовать в зависимости от:
- климатических факторов внешней среды группе 2 (С) по ГОСТ 15150;
- механических факторов группе С по ГОСТ 23216.
- 5.3. Транспортирование изделия может производиться в крытых транспортных средствах всеми видами транспорта, кроме воздушного, при условии соблюдения требований, установленных манипуляционными знаками, нанесенными на транспортную тару.
- 5.4. Условия хранения изделия в части воздействия климатических факторов должны соответствовать группе 1 (Л) по ГОСТ 15150 при отсутствии токопроводящей пыли и примесей агрессивных веществ, вызывающих коррозию и разрушение проводящих, изоляционных и защитных материалов.

Складирование изделий по высоте не допускается.